Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Nano Res ; : 1-9, 2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2288129

ABSTRACT

Plasmonic enhanced fluorescence (PEF) technology is a powerful strategy to improve the sensitivity of immunofluorescence microarrays (IFMA), however, current approaches to constructing PEF platforms are either expensive/time-consuming or reliant on specialized instruments. Here, we develop a completely alternative approach relying on a two-step protocol that includes the self-assembly of gold nanoparticles (GNPs) at the water-oil interface and subsequent annealing-assisted regulation of gold nanogap. Our optimized thermal-annealing GNPs (TA-GNP) platform generates adequate hot spots, and thus produces high-density electromagnetic coupling, eventually enabling 240-fold fluorescence enhancement of probed dyes in the near-infrared region. For clinical detection of human samples, TA-GNP provides super-high sensitivity and low detection limits for both hepatitis B surface antigen and SARS-CoV-2 binding antibody, coupled with a much-improved detection dynamic range up to six orders of magnitude. With fast detection, high sensitivity, and low detection limit, TA-GNP could not only substantially improve the outcomes of IFMA-based precision medicine but also find applications in fields of proteomic research and clinical pathology. Electronic Supplementary Material: Supplementary material (UV-Vis absorption and transmission spectra of GNPs, SEM, microscopy and digital images of PEF platforms, and fluorescence images of IFMA on PEF platforms) is available in the online version of this article at 10.1007/s12274-022-5035-6.

2.
Emerg Microbes Infect ; : 1-30, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2246462

ABSTRACT

BACKGROUND: : It is critical to determine the real-world performance of vaccines against coronavirus disease 2019 (COVID-19) so that appropriate treatments and policies can be implemented. There was a rapid wave of infections by the Omicron variant in Jilin Province (China) during spring 2022. We examined the effectiveness of inactivated vaccines against Omicron using real-world data from this epidemic. METHODS: . This retrospective case-case study of vaccine effectiveness (VE) examined infected patients who were quarantined and treated from April 16 to June 8, 2022 and responded to an electronic questionnaire. Data were analyzed by univariable and multivariable analyses. RESULTS: . A total of 2968 cases with SARS-CoV-2 infections (asymptomatic: 1029, mild disease: 1858, pneumonia: 108, severe disease: 21) were enrolled in the study. Multivariable regression indicated that the risk for pneumonia or severe disease was greater in those who were older or had underlying diseases, but was less in those who received COVID-19 vaccines. Relative to no vaccination, VE against the composite of pneumonia and severe disease was significant for those who received 2 doses (60.1%, 95%CI: 40.0%, 73.5%) or 3 doses (68.1%, 95%CI: 44.6%, 81.7%), and VE was similar in the subgroups of males and females. However, VE against the composite of all three classes of symptomatic diseases was not significant overall, nor after stratification by sex. There was no statistical difference in the VE of vaccines from different manufacturers. CONCLUSION: . The inactivated COVID-19 vaccines protected patients against pneumonia and severe disease from Omicron infection, and booster vaccination enhanced this effect.

3.
Nano research ; : 1-9, 2022.
Article in English | EuropePMC | ID: covidwho-2084312

ABSTRACT

Plasmonic enhanced fluorescence (PEF) technology is a powerful strategy to improve the sensitivity of immunofluorescence microarrays (IFMA), however, current approaches to constructing PEF platforms are either expensive/time-consuming or reliant on specialized instruments. Here, we develop a completely alternative approach relying on a two-step protocol that includes the self-assembly of gold nanoparticles (GNPs) at the water—oil interface and subsequent annealing-assisted regulation of gold nanogap. Our optimized thermal-annealing GNPs (TA-GNP) platform generates adequate hot spots, and thus produces high-density electromagnetic coupling, eventually enabling 240-fold fluorescence enhancement of probed dyes in the near-infrared region. For clinical detection of human samples, TA-GNP provides super-high sensitivity and low detection limits for both hepatitis B surface antigen and SARS-CoV-2 binding antibody, coupled with a much-improved detection dynamic range up to six orders of magnitude. With fast detection, high sensitivity, and low detection limit, TA-GNP could not only substantially improve the outcomes of IFMA-based precision medicine but also find applications in fields of proteomic research and clinical pathology. Electronic Supplementary Material Supplementary material (UV—Vis absorption and transmission spectra of GNPs, SEM, microscopy and digital images of PEF platforms, and fluorescence images of IFMA on PEF platforms) is available in the online version of this article at 10.1007/s12274-022-5035-6.

SELECTION OF CITATIONS
SEARCH DETAIL